$$
y=\frac{3}{1} x+4
$$

$$
m=3 u p
$$

right 1

$$
\begin{gathered}
y=-\frac{2}{3} x+\frac{1}{5} \\
m=-\frac{2}{3} \text { down }
\end{gathered}
$$

$$
\begin{aligned}
\frac{2 x}{3 x}+3 y & =5 \\
\frac{-2 x}{3} & =\frac{-2 x}{3}+\frac{5}{3} \\
\frac{3 y}{} & =\frac{2}{3} x+\frac{5}{3}
\end{aligned}
$$

$$
\begin{aligned}
\frac{8 x+4 y}{4 x} & =16 \\
\frac{-8 x}{4} & =\frac{-8 x}{4}+\frac{16}{4} \\
y & =(-2) x+4
\end{aligned}
$$

Lesson 18: There is Only One Line Passing Through a Given Point
with a Given Slope
Classwork
Opening Exercise
Examine each of the graphs and their equations below. Identify the coordinates of the point where the line intersects the y-axis. Describe the relationship between the point and the equation $y=m x+b$.

[^0]$$
b=y \text {-intercept }(0, b)
$$

Example 1
Graph the equation $y=\frac{2}{3} x+1$. Name the slope and y-intercept.

$$
b:(0,1)
$$

$$
m: \frac{2 u p}{3} \text { right }
$$

Example 2
Graph the equation $y=-\frac{3}{4} x-2$. Name the slope and y-intercept.

Exercises

1. Graph the equation $y=\frac{5}{2} x-4$.
a. Name the slope and the y-intercept.

$$
b:(0,-4)
$$

b. Graph the known point, and then use the slope to find a second point before drawing the line.

2. Wrap the equation $y=-3 x+6$.

$$
\text { a. Name the slope and the } y \text {-intercept. } \mathrm{b}(0,6) \mathrm{m}:-\frac{3}{1} \text { down }
$$

3. The equation $y=1 x+0$ can be simplified to $y=x$. Graph the equation $y=x$.
a. Name the slope and the y-intercept.
b. Graph the known point, and then use the slope to find a second point before drawing the line.

4. Graph the point $(0,2)$

a. Find another point on the graph using the slope, $m=\frac{2}{7}$,
b. Connect the points to make the line.

COMMON $\left\lvert\, \begin{array}{ll}\text { Lessan 18: } & \begin{array}{l}\text { There is Only One Line Passing Through o Given Point with a Given Slope } \\ \text { Date: } \\ \text { CORE: }\end{array} \text { engage }\end{array}\right.$

c. Draw a different line that goes through the point $(0,2)$ with slope $m=\frac{2}{2}$. What do you notice?
5. A bank put $\$ 10$ into a savings account when you opened the account. Eight weeks later, you have a total of $\$ 24$. Assume you saved the same amount every week.

If y is the total amount of money in the savings account and x represents the number of weeks, write an equation in the form $y=m x+b$ that describes the situation.
b. Identify the slope and the y-intercept. What do these numbers represent?
c. Graph the equation on a coordinate plane.

d. Could any other line represent this situation? for example, could a line through point (0,10) with slope $\frac{7}{5}$ represent the amount of monev you save each week? Explain.
6. A group of friends are on a road trip. So far, they have driven 120 miles. They continue their trip and drive at a

Let y represent the etalal distance traveled in x hours. Write an equation to represent the total number of miles driven in x hours.

Identify the slope and the y-intercept. What do these numbers represent?
c. Graph the equation on a coordinate plane
d. Could any other line represent this situation? For example, could a line through point $(0,120)$ wit slope 75 represent the total distance the friends drive? Explain.

Lesson Summary

The equation $y=m x+b$ is in slope-intercept form. The number m represents the slope of the graph, and the point $(0, b)$ is the location where the graph of the line intersects the y-axis.
To praph a line from the slope-intercept form of a linear equation, begin with the known point, ($0, b$), and then use the slope to find a second point. Connect the points to graph the equation.
There is only one line passing through a given point with a given slope.

Problem Set
Graph each equation on a separate pair of x - and y-axes.

1. Graph the equation $y=\frac{4}{5} x-5$.
a. Name the slope and the y-intercept.
b. Graph the known point, and then use the slope to find a second point before drawing the line.
2. Graph the equation $y=x+3$.
a. Name the slope and the y-intercept.
b. Graph the known point, and then use the slope to find a second point before drawing the line.
3. Graph the equation $y=-\frac{4}{3} x+4$.
a. Name the slope and the y-intercept.
b. Graph the known point, and then use the slope to find a second point before drawing the line.
4. Graph the equation $y=\frac{5}{2} x$.
a. Name the slope and the y-intercept.

Graph the known point, and then use the slope to find a second point before drawing the line.
5. Graph the equation $y=2 x-6$.
a. Name the slope and the y-intercept
b. Graph the known point, and then use the slope to find a second point before drawing the line.
6. Graph the equation $y=-5 x+$
a. Name the slope and the y-intercept.
b. Graph the known point, and then use the slope to find a second point before drawing the line.
7. Graph the equation $y=\frac{1}{3} x+1$.
a. Name the slope and the y-intercept.
b. Graph the known point, and then use the slope to find a second point before drawing the line.
8. Graph the equation $5 x+4 y=8$. (Hint: Transform the equation so that it is of the form $y=m x+b$.)
a. Name the slope and the y-intercept.
b. Graph the known point, and then use the slope to find a second point before drawing the line.
9. Graph the equation $-2 x+5 y=30$.
a. Name the slope and the y-intercept.
b. Graph the known point, and then use the slope to find a second point before drawing the line.
10. Let l and l ' be two lines with the same slope m passing through the same point P. Show that there is only one line with a slope m, where $m<0$, passing through the given point P. Draw a diagram if needed.

-
(ब) [meshal ${ }^{n}$
nexh terod nate
S. 106

[^0]:
 5.98

 (©) [messal

