Standard Form

$$
A x+B y=C
$$

Every point on the y-axis has an x-value of 0 .
To find the y-intercept, plug-in O for x.
(cover the x and Solve)

$$
(0, \ldots)
$$

Every point on the x-axis has a y-value of O.
To find the x-intercept plugin 0 for y.
(cover the y and solve.)

$$
(-, 0)
$$

Lesson 19: The Graph of a Linear Equation in Two Variables Is a

Line

Classwork
Exercises
THEorem: The graph of a linear equation $y=m x+b$ is a non-vertical line with slope m and passing through $(0, b)$,
where b is a constant.

1. Prove the theorem by completing parts (a)-(c). Given two distinct points, P and Q, on the graph of $y=m x+b$ and let I be the line passing through P and Q. You must show the following:
(1) Any point on the graph of $y=m x+b$ is on line l, and
(2) Any point on the line l is on the graph of $y=m x+b$.
d. Proof of (1): Let R be any point on the graph of $y=m x+k$. Show that R is on l. Begin by assuming it is not Assume the graph looks like the diagram below where R is on t.

What is the slope of line l ?

What is the slope of line l '?

What can you conclude about lines l and l^{\prime} ? Explain.
b. Proof of (2): Let S be any point on line l, as shown.

Show that S is a solution to $y=m x+b$. Hint: Use the point $(0, b)$.
c. Now that you have shown that any point on the graph of $y=m x+b$ is on line l in part (a), and any point on line l is on the graph of $y=m x+b$ in part (b), what can you conclude about the graphs of linear equations?
2. Use $x=4$ and $x=-4$ to find two solutions to the equation $x+2 y=6$. Plot the solutions as points on the coordinate plane, and connect the points to make a line.
a. Identify two other points on the line with integer coordinates. Verify that they are solutions to the equation

d. Is the point $(3,2)$ on the line?
e. Is the point (3,2) a solution to the linear equation $x+2 y=6$

3. Use $x=4$ and $x=1$ to find two solutions to the equation $3 x-y=9$. Plot the solutions as points on the coordinate plane, and connect the points to make a line.
Identify two other points on the line with integer ccordinates. Verify that they are solutions to the equation 3x-y=9. Standard Form - Intercepts
$(3,0) \frac{x \text {-int }}{3 x=9}$
y-int.
$-y=9$
$y=-9$$(0,-9)$
b. When $x=4.5$, what is the value of y ? Does this soldtion appear to be a point on the line?
c. When $x=\frac{1}{2}$, what is the value of y ? Does this solution appear to be a point on the line?
d. Is the point $(2,4)$ on the line?

e. Is the point $(2,4)$ a solution to the linear equation $3 x-y=9$?
4. Use $x=3$ and $x=-3$ to find two solutions to the equation $2 x+3 y=12$. Plot the solutions as points on the coordinate plane, and connect the points to make a line.
a. Identify two other points on the line with integer coordinates. Verify that they are solutions to the equation $2 x+3 y=12$.
b. When $x=2$, what is the value of y ? Does this solution appear to be a point on the line?

COMMON	$\left\lvert\, \begin{aligned} & \text { lesson } 198 \\ & \text { Date: } \end{aligned}\right.$	The Graph of a Linear Equation in Two Variables Is a Line 11/19/14	engage ${ }^{\text {ny }}$

c. When $x=-2$, what is the value of y ? Does this solution appear to be a point on the line?
d. Is the point $(8,-3)$ on the line?
e. Is the point $(8,-3)$ a solution to the linear equation $2 x+3 y=12$?
5. Use $x=4$ and $x=-4$ to find two solutions to the equation $x-2 y=8$. Plot the solutions as points on the coordinate plane and connect the points to make a line.
a. Identify two other points on the line with integer coordinates. Verify that they are solutions to the equation $x-2 y=8$.
b. When $x=7$, what is the value of y ? Does this solution appear to be a point on the line?
c. When $x=-3$, what is the value of y ? Does this solution appear to be a point on the line?

d. Is the point $(-2,-3)$ on the line?
e. Is the point $(-2,-3)$ a solution to the linear equation $x-2 y=8$?
6. Based on your work in Exercises 2-5, what conclusions can you draw about the points on a line and solutions to a linear equation?
7. Based on your work in Exercises $2-5$, will a point that is not a solution to a linear equation be a point on the graph of a linear equation? Explain.
8. Based on your work in Exercises 2-5, what conclusions can you draw about the graph of a linear equation?
9. Graph the equation $-3 x+8 y=24$ using intercepts.
10. Graph the equation $x-6 y=15$ using intercepts.
11. Graph the equation $4 x+3 y=21$ using intercept:


```
Lesson Summary
The graph of a linear equation is a line. A linear equation can be graphed using two-points: the }x\mathrm{ -intercept and the
-intercept.
Example:
    Graph the equation: }2x+3y=9
    Replace }x\mathrm{ with zero and solve for }y\mathrm{ to determine the }y\mathrm{ -intercept
        2(0)}+3y=
            3y=9
            = 3
    The y-intercept is at (0,3).
Replace \(y\) with zero and solve for \(x\) to determine the \(x\)-intercept.
\(2 x+3(0)=9\)
            2x=9
                x=\frac{9}{2}
The \(x\)-intercept is at \(\left(\frac{9}{2}, 0\right)\).
```


©R

Problem Set

Graph each of the equations in the Problem set on a different pair of x and y axes.

1. Graph the equation: $y=-6 x+12$. Slope - Intercept
2. Graph the equation: $9 x+3 y=18$. Standard
3. Graph the equation: $y=4 x+2$. Slope - Intercept
4. Graph the equation: $y=-\frac{5}{7} x+4$. Slope-Intercept
5. Graph the equation: $\frac{3}{4} x+y=8$. Standard
6. Graph the equation: $2 x-4 y=12$. Standart
7. Graph the equation: $y=3$. What is the slope of the graph of this line? HOY
8. Graph the equation: $x=-4$. What is the slope of the graph of this line? VUX
9. Is the graph of $4 x+5 y=\frac{3}{7}$ a line? Explain.
10. Is the graph of $6 x^{2}-2 y=7$ a line? Explain.

COMMON	$\left.\right\|_{\text {Dosese: }} ^{\text {lese }}$	The Graph of a Linear Equation in Two Variables is a Line 11/19/14	engage ${ }^{\text {ny }}$

