Standard Form Ax + By = C Every point on the y-axis has an x-value of O. To find the y-intercept, plug-in O for x. (Cover the x and solve) (O, _) Every point on the x-axis has a y-value of O. To find the x-intercept has a y-value of O. $(O, _)$ Every point on the x-axis has a y-value of O. To find the x-intercept plug in O for y. (cover the y and solve) (_, O)		
To find the y-intercept, plug-in O for x. (cover the x and solve) (O,) Every point on the x-axis has a y-value of O. To find the x-intercept plug-in O for y. (cover the y and solve.) Use the slope for more points ΔY ΔX		
(cover the x and solve) (0, _) Every point on the x-axis has a y-value of 0. To find the x-intercept plug-in 0 for y. (cover the y and solve.)	tos an x-value of O. To find the y-intercept,	Start with (0, b) *y-intercept *
has a y-value of O. To find the x-intercept plug-in O for y. (cover the y and solve.)	(cover the x and solve)	
(cover the y and solve.)	has a y-value of O. To find the X-intercept	
		JC.)

NYS COMMON CORE MATHEMATICS CURRICULUM	Lesson 19 8•4	
What is the slope of line l' ?		
What can you conclude about lines l and l' ? Explain.		
b. Proof of (2): Let S be any point on line l, as shown.		
$\begin{array}{c} & y \\ & \\ & \\ & \\ & \\ & \\ & \\ & \\ & \\ &$		
Show that S is a solution to $y = mx + b$. Hint: Use the point $(0, b)$.		
The work is located under a	engage ^{ny} <u>5.108</u>	

	NYS COMMON CORE MATHEMATICS CURRICULUM Lesson 19 8-4
	d. Is the point $(-2, -3)$ on the line?
	e. Is the point $(-2, -3)$ a solution to the linear equation $x - 2y = 8$?
	6. Based on your work in Exercises 2–5, what conclusions can you draw about the points on a line and solutions to a linear equation?
;	7. Based on your work in Exercises 2–5, will a point that is not a solution to a linear equation be a point on the graph of a linear equation? Explain.
	8. Based on your work in Exercises 2–5, what conclusions can you draw about the graph of a linear equation?
	Lesson 19: Date: The Graph of a Linear Equation in Two Variables Is a Line 11/19/14 Engage ^{Ny} 5.112 0 2014 Converse Core, Inc. Some rights reserved. Generation converses Sha work is increased under a Inclusion Conversition with the located under a Inclusion Conversition with the located Under a S.112

January 13 2016.GWB - 8/10 - Wed Jan 13 2016 10:39:03

NYS COMMON CORE MATHEMATICS CURRICULUM	Lesson 19 8•4	
9. Graph the equation $-3x + 8y = 24$ using intercepts.		
10. Graph the equation $x - 6y = 15$ using intercepts.		
11. Graph the equation $4x + 3y = 21$ using intercepts.		
COMMON Lesson 19: The Graph of a Linear Equation in Two Variables Is a Line Date: 11/19/14	engage ^{ny} s.113	
© 2014 Convent Core, Inc. Some lights reserved operationase.org	eConversite's ShawAlile 1.0 Unserted Literate.	

