- Every graph has an equation!

Lesson 20: Every Line Is a Graph of a Linear Equation

Figure 2

$$
y=-\frac{1}{4} x+2
$$

Exercises

$$
\begin{aligned}
& \text { Use the properties of equality to change } \\
& \text { the equation from slope-intercept form, } \\
& y=m x+b \text {, to standard form, } \\
& a x+b y=c \text {, where } a, b, \text { and } c \text { are } \\
& \text { integers, and } a \text { is not negative. }
\end{aligned}
$$

$$
-1(-3 x+y=z)
$$

$$
3 x-y=-2
$$

$$
y=-\frac{2}{3} x-1
$$

\qquad
\qquad

$$
y=-\frac{2}{3} x-i
$$

$$
\left.+\frac{2}{3} x \right\rvert\,+\frac{2}{3} x
$$

* Multiply by the common

$$
\begin{array}{r}
\left(\frac{2}{3} x+y=-1\right) \\
\text { cannon }=2 x+3 y=-3 \\
\text { engage }=2
\end{array}
$$ denominator*

$$
\begin{aligned}
& \text { 3. Withe the equation that represents the } \\
& \text { line shown. } \\
& y=-\frac{1}{5} x-4
\end{aligned}
$$

Use the properties of equality to change the equation from slope-intercept form,
$y=m x+b$, to standard form, $y=m x+b$, to standard form,
$a x+b y=c$, where a, b, and c are

$$
y=-\frac{1}{5} x-4
$$

$$
+\frac{1}{5} x \cdot+\frac{1}{5} x
$$

$$
\left(\frac{1}{5} x+y=-4\right)^{5}
$$

$$
\begin{aligned}
& \text { Write the equ: } \\
& \text { line shown. }
\end{aligned}
$$

$$
y=x
$$

Use the properties of equality to change $y=m x+b$, to standard form, $a x+b y=c$, where a, b, and c are
integers, and a is not negative.

$$
\begin{aligned}
& -x=x \\
& (-x+y=0)^{-1} \\
& x-y=0
\end{aligned}
$$

5. Write the equation that represents the line shown.

Use the properties of equality to change the equation from slope-intercept form, $y=m x+b$, to standard form,
$a x+b y=c$, where a, b, and c are integers, and a is not negative.

6. Write the equation that represents the line shown.

Use the properties of equality to change the equation from slope intercept form, $y=m x+b$, to standard form, $a x+b y=c$, where a, b, and c are integers, and a is not negative.

Lesson Summary
Write the equation of a line by determining the y-intercept, ($0, b$) and the slope, m, and replacing the numbers b and m into the equation $y=m x+b$

Example:

The y-intercept of this graph is $(0,-2)$
The slope of this graph is $m=\frac{4}{1}=4$.
The equation that represents the graph of this line is $y=4 x-2$.
Use the properties of equality to change the equation from slope-intercept form, $y=m x+b$, to standard form, $a x+b y=c$, where a, b, and c are integers and a is not negative.

COMMON	Lesson 20: Date:	Every Line is a Graph of a Linear Equation 11/19/14	engage ${ }^{\text {ny }}$

Problem Set

1. Write the equation that represents the line shown.

Use the properties of equality to change the equation from slope-intercept form, $y=m x+b$, to standard form, $a x+b y=c$, where a, b, and c are integers, and a is not negative.

2. Write the equation that represents the line shown.

Use the properties of equality to change the equation rom slope-intercept form, $y=m x+b$, to standard form, $a x+b y=c$, where a, b, and c are integers, and a is not negative.

5.121
3. Write the equation that represents the line shown.

Use the properties of equality to change the equation from slope-intercept form, $y=m x+b$, to standard form, $a x+b y=c$, where a, b, and c are integers, and a is not negative.

4. Write the equation that represents the line shown.

Use the properties of equality to change the equation from slope-intercept form, $y=m x+b$, to standard form, $a x+b y=c$, where a, b, and c are integers, and a is not negative.

5. Write the equation that represents the line shown.

Use the properties of equality to change the equation from slope-intercept form, $y=m x+b$, to standard form, $a x+b y=c$, where a, b, and c are integers, and a is not negative.

6. Write the equation that represents the line shown.

Use the properties of equality to change the equation from slope-intercept form,
$y=m x+b$, to standard form, $a x+b y=c$ where a, b, and c are integers, and a is not egative

