Lesson 17: Distance on the Coordinate Plane

Classwork
Example 1
What is the distance between the two points A and B on the coordinate plane?
$\overline{A B}=6$ units

What is the distance between the two points A and B on the coordinate plane?
$\overline{A B}=2$ units

$\begin{aligned} & \text { EUREKA } \\ & \hline \end{aligned}$	\|lesson 17:	Distance on the Cocrdinate Plase	engage ${ }^{\text {ny }}$	5.85
	,		duater	

When points are diagonal, use them to make a right triangle.

$\overline{A B} \approx 6.3$ units

Example 2

Given two points A and B on the coordinate plane, determine the distance between them. First, make an estimate;
then, try to find a more precise answer. Round your answer to the tenths place.
$a^{2}+b^{2}=c^{2}$
$3^{2}+3^{2}=c^{2}$
$9+9=c^{2}$
$18=c^{2}$
$\sqrt{18}=c$
$4.2 \approx c$

$=3 \sqrt{2}$

$\begin{aligned} & \text { EUREKA } \\ & \text { MATH } \end{aligned}$	$\left.\right\|^{\text {lessen 17: }}$	Distance on the coordinste Plane	engage ${ }^{\text {ny }}$	5.86
	- .enkene	bentus	mater	

Exercises 1-4

For each of the Exercises 1-4, determine the distance between points A and B on the coordinate plane. Round your
answer to the tenths place.
1.

$a^{2}+b^{2}=c^{2}$
$6^{2}+5^{2}=c^{2}$
$36+25=c^{2}$
$61=c^{2}$
$\sqrt{61}=c$
$7.8 \approx c$
2.
$\overline{A B} \approx 7.8$ units

3.

4.

EUREKA	\| lesson 17:	Distance on the Cocordinste Plane	engage ${ }^{\text {ny }}$	5.88
notatherstat	-..ekent		mater	

Example 3

Is the triangle formed by the points A, B, C a right triangle?

EUREKA	\| lesson 17:	Distance on the Cocordinste Plane	engage ${ }^{\text {ny }}$	5.89
notatherstat	-..ekent		mater	

Lesson Summary

To determine the distance between two points on the coordinate plane, begin by connecting the two points. Then, draw a vertical line through one of the points and a horizontal line through the other point. The intersection of the vertical and horizontal lines forms a right triangle to which the Pythagorean theorem can be applied.

To verify if a triangle is a right triangle, use the converse of the Pythagorean theorem.

Problem Set

For each of the Problems 1-4, determine the distance between points A and B on the coordinate plane. Round your
answer to the tenths place.
1.

2.

3.

4.

EUREKA	\| lesson 17:	Distance on the Cocrdinste Plane	engage ${ }^{\text {ny }}$	S. 91
notatherstat	-..ekent		mater	

5. Is the triangle formed by points A, B, C a right triangle?
2

This is not a right triangle

EUREKA	\| lesson 17:	Distance on the Cocordinste Plane	engage ${ }^{\text {ny }}$	S. 92
	20x		tioner	

