Lesson 18: Applications of the Pythagorean Theorem

Classwork
Exercises

1. The area of the right triangle shown below is $26.46 \mathrm{in}^{2}$. What is the perimeter of the right triangle? Round your answer to the tenths place.

$$
\frac{26.46}{3.15}=\frac{3.15}{3.15} h
$$

$$
8.4^{2}+6.3^{2}=c^{2}
$$

$$
70.56+39.69=c^{2}
$$

$$
110.25=c^{2}
$$

$$
10.5=c
$$

Perimeter $=$ Add all sides

$$
\begin{aligned}
& P=10.5+6.3+8.4 \\
& P=25.2
\end{aligned}
$$

The perimeter of this right triangle is 25.2 in .
2. The diagram below is a representation of a soccer goal.

a. Determine the length of the bar, c, that would be needed to provide structure to the goal. Round your answer to the tenths place.

$$
\begin{array}{rlr}
a^{2}+b^{2} & =c^{2} & c=\sqrt{73} \\
8^{2}+3^{2} & =c^{2} & c \approx 8.5 \\
64+9 & =c^{2} & \\
73 & =c^{2} &
\end{array}
$$

b. How much netting (in square feet) is needed to cover the entire goal?

2 triangles + rectangle we would need

$$
2\left(\frac{1}{2}(3)(8)\right)+(10)(8.5)
$$

0

A TV with length 20 inches and width 15 inches, fo
$4 x$ inches and width $3 x$ inches for any number x.
$4 x$ inches and width $3 x$ inches for any number x.
a. What is the advertised size of

$$
\begin{aligned}
a^{2}+b^{2} & =c_{2}^{2} \quad c=25 \\
15^{2}+28^{2} & =c^{2} \quad \\
225+400 & =c^{2} \\
625 & =c^{2}
\end{aligned}
$$

$$
252-3 x \frac{12}{4 \times 2}+\frac{1}{33.6}
$$

$$
\begin{aligned}
& a^{2}+b^{2}=c^{2} \\
& (3 x)^{2}+(4 x)^{2}=42^{2} \\
& 9 x^{2}+16 x^{2}=1764 \\
& \frac{25}{25} x^{2}=\frac{1764}{25}
\end{aligned}
$$

$$
x^{2}=70.56
$$

$$
x=8.4
$$

Check that the dimensions you got in part (b) are correct using the Pythagorean theorem.
d. The table that your TV currently rests on is $30^{\prime \prime}$ in length. Will the new TV fit on the table? Explain.
4. Determine the distance between the following pairs of points. Round your answer to the tenths place. Use graph aper if necessary
a. $(7,4)$ and $(-3,-2)$
b. $(-5,2)$ and $(3,6)$

EUREKA	\|esson 18:	Applations of the Pyythagrean Theorem	engage ${ }^{\text {ny }}$	S. 96
chim	-		tuate.	

c. Challenge: $\left(x_{1}, y_{1}\right)$ and (x_{2}, y_{2}). Explain your answer.
5. What length of ladder is needed to reach a height of 7 feet along the wall when the base of the ladder is 4 feet from the wall? Round your answer to the tenths place.

EUREKA \mid Lessen 18: Applications of the Pythagorean Theorem

Problem Set

1. A 70° TV is advertised on sale at a local store. What are the length and width of the television?
2. There are two paths that one can use to go from Sarah's house to James' house. One way is to take C Street, and the other way requires you to use A Street and B Street. How much shorter is the direct path along C Street?

3. An isosceles right triangle refers to a right triangle with equal leg lengths, s, as shown below.

What is the length of the hypotenuse of an isosceles right triangle with a leg length of 9 cm ? Write an exact answer using a square root and an approximate answer rounded to the tenths place

EUREKA MATH	$\left.\right\|^{\text {lesson 18: }}$	Applation of the Pythagrean Theorem	engage ${ }^{\text {ny }}$	S.98
	amis	cems crew Wrat antionitus		nex

4. The area of the right triangle shown to the right is $66.5 \mathrm{~cm}^{2}$.
. What is the height of the triangle?
b. What is the perimeter of the right triangle? Round your answer to the tenths place.

5. What is the distance between points $(1,9)$ and $(-4,-1)$? Round your answer to the tenths place.
6. An equilateral triangle is shown below. Determine the area of the triangle. Round your answer to the tenths place.

