Divide: Top dog in the dog house
Lesson 8: The Long Division Algorithm
Terminating: stops Repeating: repeats $\begin{array}{ll}\text { Classwork } \\ \text { Example } 1 & \text { Bases 2,5,10 astern }\end{array}$

Exploratory Challenge/Exercises 1-5
1.
a. Use long division to determine the decimal expansion of $\frac{142}{2}$.
b. Fill in the blanks to show another way to determine the decimal expansion of $\frac{142}{2}$

$$
\begin{aligned}
& 142=71 \times 2+0 \\
& \frac{142}{2}=\frac{71 \times 200}{2} \\
& \frac{142}{2}=\frac{71 \times 2}{2}+\frac{0}{2} \\
& \frac{142}{2}=71+\frac{0}{2} \\
& \frac{142}{2}=71
\end{aligned}
$$

c. Does the number $\frac{142}{2}$ have a finite or an infinite decimal expansion?
finite (terminating)
2.
a. Use long division to determine the decimal expansion of $\frac{142}{4}$.
Decimals a zero.
b. Fill in the blanks to show another way to determine the decimal expansion of $\frac{142}{4}$.

$$
\begin{aligned}
& 4 \longdiv { 3 5 . 5 } \\
& \frac{-1420}{22} \\
& \frac{-20}{620} \\
& \frac{230}{2}
\end{aligned}
$$

$$
\begin{aligned}
& 142=\underline{35} \times 4+2 \\
& \frac{142}{4}=\frac{35 \times 4+2}{4}
\end{aligned}
$$

$$
\frac{142}{4}=\frac{3 S \times 4}{4}+\frac{2}{4}
$$

$$
\begin{aligned}
& \text { uses } \\
& \text { remainder }
\end{aligned}
$$

$$
\frac{142}{4}=\frac{3 S}{}+\frac{2}{4}
$$

$$
\frac{142}{4}=35 \frac{2}{4}
$$

$$
35 \frac{1}{2}
$$

c. Does the number $\frac{142}{4}$ have a finite or an infinite decimal expansion?
3. Use long division to determine the decimal expansion of $\frac{142}{6}$.

6 | $23 . \overline{6}$ |
| ---: |
| 142.0 |
| $-12 \downarrow$ |
| 2 |
| $\frac{-18}{4}$ |
| $\frac{-36}{4}$ |

$$
\begin{aligned}
& 142=23 \times 6+4 \\
& \frac{142}{6}=\frac{23 \times 6+}{6} \\
& \frac{142}{6}=\frac{23}{6} \times 6+\frac{4}{6} \\
& \frac{142}{6}=23 \\
& \frac{442}{6}=23 \frac{2}{3}
\end{aligned}
$$

c. Does the number $\frac{142}{6}$ have a finite or an infinite decimal expansion?

$$
\longrightarrow
$$

$$
23 \frac{2}{3}=23 \cdot \overline{6}
$$

a. Use long division to determine the decimal expansion of $\frac{142}{11}$. Repeat

II cannot be made with a

- base 2,5, or 10
b. Fill in the blanks to show another way to determine the decimal expansion of $\frac{142}{11}$.

$$
\begin{aligned}
& 142=\ldots \times 11+\ldots \\
& \frac{142}{11}=\frac{\square}{11} \times 11+ \\
& \frac{142}{11}=\frac{=}{11} \times 11 \\
& \frac{142}{11}=-\quad+\overline{11} \\
& \frac{142}{11}=
\end{aligned}
$$

c. Does the number $\frac{142}{11}$ have a finite or an infinite decimal expansion?

EUREKA EUKEKA	Lesson 8:	The long Diwsion Agorehm	engage ${ }^{\text {ny }}$	S. 42
Mathem			mater	

5. In general, which fractions produce infinite decimal expansions?

Exercises 6-10
6. Does the number $\frac{65}{13}$ have a finite or an infinite decimal expansion? Does its decimal expansion have a
repeating pattern?

13 cannot be made with a base 2,5,10.
7. Does the number $\frac{17}{11}$ have a finite or an infinite decimal expansion? Does its decimal expansion have a repeating pattern? Repeat

$$
\frac{1}{7}=
$$

9. Does the number $\frac{860}{999}$ have a finite or an infinite decimal expansion? Does its decimal expansion have a repeating
pattern? pattern?

999 cannot be made with base 2,5 , or 10 .
10. Is the number $0.1234567891011121314151617181920212223 \ldots$ rational? Explain. (Assume the pattern you see in the decimal expansion continues.)

No
There is no repeating block of numbers.

> Lesson Summary
> A rational number is a number that can be written in the form $\frac{a}{b}$ for a pair of integers a and b with b not zero. The long division algorithm shows that every rational number has a decimal expansion that falls into a repeating pattern. For example, the rational number 32 has a decimal expansion of $32 . \overline{0}$, the rational number $\frac{1}{3}$ has a decimal expansion of $0 . \overline{3}$, and the rational number $\frac{4}{11}$ has a decimal expansion of $0 . \overline{45}$.

Problem Set

1. Write the decimal expansion of $\frac{7000}{9}$ as an infinitely long repeating decimal.
2. Write the decimal expansion of $\frac{6555555}{3}$ as an infinitely long repeating decimal.
3. Write the decimal expansion of $\frac{350000}{11}$ as an infinitely long repeating decimal.
4. Write the decimal expansion of $\frac{1200000}{37}$ as an infinitely long repeating decimal.
5. Someone notices that the long division of $2,222,22$ inflinite a quotient of 370,370 and a remainder of 2 and wonders why there is a repeating block of digits in the uotient, namely 370 . Explain to the person why this happens.
6. Is the answer to the division problem number $10 \div 3.2$ a rational number? Explain.
7. $15 \frac{3}{77}$ a rational number? Explain.
yes repeat
8. The decimal expansion of a real number x has every digit 0 except the first digit, the tenth digit, the hundredth digit, the thousandth digit, and so on, are each 1 . Is x a rational number? Explain.

$\begin{aligned} & \text { EUREKA } \\ & \text { MATH } \end{aligned}$	Lessone 8:	The long Diwsion Aggorthm	engage ${ }^{\text {ny }}$	S. 45
			mater	

