esson 10: Operations with Numbers in Scientific Notation

Classwork
xercise 1
The speed of light is $300,000,00 \mathrm{O}$ meters per second. The sun is approximately 1.5×10^{11} meters from Earth. How many seconds does it take for sunlight to reach Earth? $300,000,000=3 \times 10^{8}$

$$
\frac{1.5 \times 10^{11-8}}{3 \times 10^{8}}=0.5 \times 10^{3}
$$

$$
=500
$$

It takes 500 seconds for sunlight to reach Earth.

ercise 2

The mass of the moon is about $23 \times 10^{22} \mathrm{~kg}$. It would take approximately $26,000,000$ moons to equal the mass of the un. Detorminn the mass of the sun.
$\cdot 7.3 \times 10^{22} \mathrm{~kg}$

The speed of light is 3×10^{8} meters per second. The sun is approximately $230,000,000,000$ meters from Mars. How many seconds does it take for sunlight to reach Mars?

$$
\begin{aligned}
& \frac{2.3 \times 10^{11}}{3 \times 10^{8}} \\
= & 0.7 \overline{6} \times 10^{3}
\end{aligned}
$$

It takes about 767 seconds

Each shrimp weighs approximately 0.00027 g and a shrimp company can bring in over $3,100,000,000$ shrimp per year. Approximately how much would that much shrimp weigh?

$$
\begin{aligned}
& 0.00027 \mathrm{~g}=2.7 \times 10^{-4} \\
& 3,100,000,000=3.1 \times 10^{9} \\
& \left(2.7 \times 10^{-4}\right)\left(3.1 \times 10^{9}\right) \\
& =8.37 \times 10^{5}
\end{aligned}
$$

$3,100,000,000$ shrimp would weigh about $837,000 \mathrm{~g}$.

Exercise 3

The mass of Earth is $5.9 \times 10^{-20} \mathrm{~kg}$. The mass of Pluto is $13,000,000,000,000,000,000,000 \mathrm{~kg}$. Compared to Pluto, how much greater is Earth's mass

Exercise 4

Using the information in Exercises 2 and 3 , find the combined mass of the moon, Earth, and Pluto.

Exercise 5

 sun (i.e., the answer to Exercise 2)?

Problem Set

1. The sun produces 38×10^{77} joules of energy per second. How much energy is produced in a year? (Note: a year is pproximately $31,000,000$ seconds)
2. On average, Mercury is about $57,000,000 \mathrm{~km}$ from the sun, whereas Neptune is about $4.5 \times 10^{9} \mathrm{~km}$ from the sun. On average, Mercury is about $57,000,000 \mathrm{~km}$ from the sun, whereas Neptune is ab
. Find their combined mass
b. Given that the mass of the sun is approximately $1.9 \times 10^{30} \mathrm{~kg}$, how many Venuses and Earths would it take to equal the mass of the sun?
(ब) [amesi
20xhlewses net.
